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Abstract. We propose an advanced Chebyshev expansion method for the numerical calculation of linear
response functions at finite temperature. Its high stability and the small required resources allow for a
comprehensive study of the optical conductivity σ(ω) of non-interacting electrons in a random potential
(Anderson model) on large three-dimensional clusters. For low frequency the data follows the analytically
expected power-law behaviour with an exponent that depends on disorder and has its minimum near the
metal-insulator transition, where also the extrapolated DC conductivity continuously goes to zero. In view
of the general applicability of the Chebyshev approach we briefly discuss its formulation for interacting
quantum systems.

PACS. 78.20.Bh Theory, models, and numerical simulation – 72.15.Rn Localisation effects (Anderson or
weak localisation) – 05.60.Gg Quantum transport

The numerical calculation of linear response functions
is one of the standard tasks in condensed matter the-
ory and many other areas of physics. In practice, how-
ever, the number of degrees of freedom usually becomes
enormously large and can easily reach N ≈ 106 or
more, e.g., for a quantum many body problem. A com-
plete diagonalisation of such systems and a naive eval-
uation of linear response functions is prohibitive is such
situations, since the required time would scale at least
as N3. The use and development of new numerical meth-
ods which are linear in the system size has therefore
become an essential part of current research. In the
present work we follow this line and propose an advanced
Chebyshev expansion method for the calculation of dy-
namical correlation functions at finite temperature. It ex-
ceeds previous attempts, in particular, since it requires
only a single simulation run for all temperatures and,
if applied to non-interacting fermions, for all chemical
potentials.

As a particularly interesting application, we study
the optical (AC) conductivity σ(ω) of non-interacting
electrons in a random potential, which has so far resisted
a thorough numerical treatment. The basic model to
describe this kind of problem and many of its features
was proposed by Anderson almost fifty years ago [1], and
since then attracted a considerable amount of analytical,
numerical, and experimental work [2]. Starting from
spinless fermions c

(†)
i which are allowed to hop between

neighbouring sites of a crystal,
H = −t

∑

〈ij〉

(
c†icj + c†jci

)
+

∑

i

εic
†
i ci , (1)

disorder can be introduced in the form of a random,
uniformly distributed local potential εi ∈ [−W/2, W/2]
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parameterised by the disorder strength W . Given this
Hamiltonian the question arises, whether its one-particle
eigenfunctions span the entire lattice, thus resembling the
Bloch waves known from an ordered crystal (W = 0),
or are localised in the vicinity of certain lattice sites.
Naturally, this change in the spatial structure of the
wave functions is reflected in the (DC) conductivity of
the system, being insulating or metallic depending on
the disorder strength W , the spatial dimension d, and
the particle density (or chemical potential µ). Much of
our current understanding of this disorder-induced metal-
insulator transition is based on the one-parameter scaling
theory of Abrahams et al. [3], which in d ≤ 2 dimen-
sions predicts insulating behaviour for any finite disor-
der W > 0 and a continuous metal-insulator transi-
tion at some Wc(µ) > 0 for d > 2. The critical be-
haviour near the transition is usually described in terms
of nonlinear σ-models [4] and is widely believed to fol-
low power laws with a correlation/localisation length ξ
diverging as ξ ∝ |Wc − W |−ν , and the DC conductivity
vanishing as σ(0) ∝ (Wc − W )s. Numerical work con-
firmed much of this general picture and over the last
years focused on the precise determination of the criti-
cal line Wc(µ) and of the critical exponents, which so far
could not be calculated analytically. For the above model
the most reliable data (Wc(0)/t = 16.54 and ν = 1.57,
cf. Ref. [5]) is based on the transfer-matrix method [6],
where in a quasi-one-dimensional geometry the correla-
tion length ξ is obtained from the finite size scaling of the
Lyapunov exponents. Unfortunately, approaches of this
type cannot directly access the DC conductivity σ(0) or
its critical behaviour. Our knowledge of the exponent s is
therefore mainly based on scaling arguments [7], namely,
s = (d − 2)ν. However, the validity of the one-parameter
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scaling theory and of the corresponding critical behaviour
has been repeatedly called into question [8,9], and instead
the non-power-like critical behaviour known for the Bethe
lattice has been proposed to hold also for hyper-cubic
systems. The resolution of this certainly not completely
settled issue may require the use of alternative numeri-
cal methods, which should preferably be based on true d
dimensional systems and yield complementary critical
quantities.

As noted before, here we want to focus on the
numerical calculation of the optical conductivity σ(ω)
of three-dimensional (cubic) clusters. This allows for
a test of various analytical predictions for the finite
frequency behaviour, and eventually we can draw
conclusions about the zero-frequency response. In par-
ticular, for d dimensional systems Wegner [7] found
σ(ω) ∼ ω(d−2)/d to hold exactly at the metal-insulator
transition, a prediction which is consistent also with
the one-parameter scaling theory [10]. On the metallic
side of the transition different studies [10–12] agree
that for small enough frequency the conductivity should
behave as ∆σ = σ(ω) − σ(0) ∼ ω(d−2)/2, whereas on
the insulating side we expect the well known σ(ω) ∼ ω2

behaviour independent of the spatial dimension [13]. As
will become clear below, the numerical calculation of σ(ω)
is a challenging task, which certainly is the reason that
only the prediction for the critical point in d = 3, i.e.,
σ(ω) ∼ ω1/3, is confirmed so far [14,15]. Within linear re-
sponse the real part of the optical conductivity is given by

σ(ω) =
∑

n,m

|〈n|Jx|m〉|2
ωLd

[f(Em)− f(En)] δ(ω −ωnm), (2)

where |n〉 and |m〉 denote eigenstates of the Hamiltonian
with energies En and Em, ωnm = En − Em, f(E) =
1/(exp(β(E − µ)) + 1) is the Fermi function, and Jx =
−it

∑
i(c

†
ici+x − c†i+xci) the x-component of the current

operator. Even at zero temperature equation (2) involves a
summation over matrix elements between all one-particle
eigenstates of H , which can hardly be calculated for a
reasonably large system. Consequently, until now, the
number of numerical attempts to this problem is very
small. Some authors relied on a full diagonalisation of
the Hamiltonian and an explicit summation of the cur-
rent matrix elements [14,16–18], but of course the sys-
tem sizes manageable with this approach are very lim-
ited. Even the dramatically improved performance of
present day computers allows only the study of clusters
of about L3 = 203 sites. More recently the so-called forced
oscillator method [15] and the projection method [19] were
applied to the problem, which increased the accessible sys-
tem size to about 303 and 2563 sites, respectively. How-
ever, the frequency and parameter ranges considered in
these works were rather limited, and unfortunately the
resolution as well as the statistical quality of the data
seem to be insufficient for a detailed analysis of the low-
frequency behaviour [19].

About a decade ago Silver and Röder [20] proposed
the kernel polynomial method (KPM) for the calculation
of the density of states of large Hamiltonian matrices,
which, in addition, turned out to be a very robust and

reliable tool for the calculation of temperature depen-
dent static quantities and zero-temperature dynamical
correlation functions of interacting systems (which in
contrast to Eq. (2) require only a single summation
over the matrix elements between the ground-state
and excitations) [21]. In a nutshell, after appropriate
rescaling of the Hamiltonian, H̃ = (H − b)/a, and of
the energy spectral quantities like the density of states,
ρ(E) =

∑N−1
n=0 δ(E − En)/N , are expanded in terms

of Chebyshev polynomials Tm(x) = cos(m acos(x)). To
alleviate the effects of a truncation of such a series the
result is convoluted with a particular kernel (the Jackson
kernel), and to a good approximation ρ(E) then reads

ρ(E) ≈ g0µ0 + 2
∑M−1

m=1 gmµm Tm[(E − b)/a]
π
√

a2 − (E − b)2
. (3)

Here the gm account for the kernel and the µm are
the actual expansion coefficients, µm =

∫
ρ(x)Tm[(x −

b)/a] dx = Tr[Tm(H̃)]/N . It turns out that the numer-
ical calculation of the coefficients µm does not require
the full evaluation of the trace of the polynomial Tm(H̃).
Instead, self-averaging properties, used also in Monte
Carlo simulations, allow for an replacement of the trace
by an average over a small number R � N of ran-
dom states |r〉. If, in addition, recursion relations for the
Chebyshev polynomials are taken into account, for sparse
Hamiltonians of dimension N the numerical effort for the
calculation of all M coefficients µm is proportional to
RNM/2, i.e., linear in N . Once the µm are known the
reconstruction of the target function is facilitated by the
close relation between Chebyshev expansion and Fourier
transform, i.e., the availability of divide-and-conquer type
algorithms (FFT).

So far we are aware of only one attempt [22] to gener-
alise the kernel polynomial method to finite-temperature
dynamical correlations (note that for non-interacting sys-
tems the numerical effort is equal for T = 0 and T > 0).
In this recent letter Iitaka and Ebisuzaki [22] propose a
Chebyshev expansion of the Boltzmann or Fermi weights
(see Eq. (2)), which is used to generate a set of cor-
respondingly weighted random vectors. These states are
then subject to standard numerical time evolution and
measurements of the targeted operator, and finally yield
the considered correlation function. Although certainly
being a useful approach, we argue that it is still unnec-
essarily complicated, mainly because each change in the
temperature T or chemical potential µ requires a new
simulation.

To avoid these complications we propose a slight
increase in the level of abstraction, namely, the intro-
duction of two-dimensional KPM. A closer inspection
of equation (2) shows that σ(ω) is easily written as an
integral over a matrix element density

j(x, y) =
1
Ld

∑

n,m

|〈n|Jx|m〉|2δ(x − En)δ(y − Em),

σ(ω) =
1
ω

∞∫

−∞
j(x, x + ω)[f(x) − f(x + ω)] dx. (4)
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Fig. 1. The matrix element density j(x, y) for the Anderson
model at W/t = 2 and 12. Note the dip developing at x = y
which finally causes the vanishing DC conductivity.

The quantity j(x, y), however, is of the same struc-
ture as the density of states, except for being a func-
tion of two variables. As was shown by Wang [23]
some years ago, it can thus be expanded as a se-
ries of polynomials Tl(x)Tm(y) and the expansion coef-
ficients µlm are characterised by a similar trace, µlm =
Tr[Tl(H̃)JxTm(H̃)Jx]/Ld. Again the trace can be replaced
by an average over just a few random vectors |r〉, and
the numerical effort for an expansion of order l, m <
M � N ranges between 2RNM and RNM2, depend-
ing on whether memory is available for up to M vec-
tors of dimension N or not. Probably overlooking the
potential of the approach, so far only the zero temper-
ature response was studied and, in particular, the back
transformation of the expansion coefficients relied on pure
truncated Chebyshev series [23]. The latter, however, suf-
fer from unwanted high-frequency oscillations and the
positivity of j(x, y) is not ensured. We therefore gen-
eralised the Jackson kernel and the KPM to two di-
mensions. Combined with fast Fourier methods, which
are available for arbitrary dimension, this leads to an
easy and reliable method for the calculation of j(x, y)
and σ(ω).

Note the main advantage of this approach: Once we
know the coefficients µlm and the resulting j(x, y), we can
immediately calculate σ(ω) for all temperatures and all
chemical potentials, without repeating the most time con-
suming step of calculating µlm (and, for the present model,
averaging over several realisations of disorder). In addi-
tion, as was shown in a number of works, standard KPM is
numerically much more stable and allows much higher res-
olution than the popular Lanczos recursion approach [24].
We therefore believe that the new generalisation of KPM
will also outperform the finite-temperature Lanczos meth-
ods proposed recently [25,26]. The generalisation of the
approach to interacting systems is straightforward [27]. It
merely requires a substitution of the Fermi function by the
Boltzmann weight in equation (4), and a division of the
result by the partition function, which is readily obtained
from an expansion of the density of states.

Applying the approach to the Anderson model, we ob-
tain the matrix element density j(x, y) shown in Figure 1.
Starting from a “shark fin” at weak disorder, with in-
creasing W the density j(x, y) spreads in the entire energy
plane, simultaneously developing a sharp dip along x = y.
A comparison with equation (4) reveals, that it is this dip
which is responsible for the decreasing and finally vanish-
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Fig. 2. Optical conductivity of the 3D Anderson model
at T = 0 and µ = 0 (band centre) for increasing disorder W .
The thick red lines mark W/t = 16, which approximately cor-
responds to the critical disorder. Data denoted by solid lines
is based on N = 503 site clusters, expansion order M = 1024,
and S = 240 . . . 360 disordered samples, dashed lines in the
inset correspond to N = 1003, M = 2048 and S = 400 . . . 440.

ing DC conductivity. For µ = 0 (band centre) and T = 0
the corresponding optical conductivity σ(ω) is given in
Figure 2. Note, that the calculation is based on large fi-
nite clusters with up to N = L3 = 1003 sites and peri-
odic boundary conditions, the data is averaged over up
to S = 440 disordered samples, and the expansion or-
der M = 1024 (or M = 2048 for the dashed sets in
the inset). At weak disorder the conductivity is almost
Drude like with only a small dip at low frequency. With
increasing disorder this small-ω feature becomes more pro-
nounced and finally leads to insulating behaviour at strong
disorder. Beyond a sharpening maximum near ω ≈ t the
conductivity falls of almost with a power law and later
exponentially.

The high precision of the data allows for a detailed
comparison of the low frequency behaviour with the above
mentioned analytical results. In the inset of Figure 2 we
focus on the low frequency part and plot the conductiv-
ity data again on a double-logarithmic scale. Clearly, for
disorder W/t ≥ 16 the data follows a power law, whereas
for W/t < 16 the slight upturn at low frequencies accounts
for the finite DC conductivity. To substantiate these find-
ings, in Figure 3 we show fits of the low-frequency data
to σ(ω) = σ(0) + Cωα. Starting from the localised phase
at large W the DC conductivity σ(0) is zero and the expo-
nent α decreases continuously with W , reaching α = 1/3
near W/t ≈ 16. Below that value σ(0) increases continu-
ously with decreasing disorder W , and the same seems to
hold for α. Note that we slightly vary µ around zero to
expand the data basis and estimate the error of the fits.
Unfortunately, for W/t < 16 the three free parameters
lead to a sizeable uncertainty in particular for the expo-
nent α. Nevertheless, we can confirm the general trends,
namely an increase of the exponent α from 1/3 at the crit-
ical point to eventually a value of 2 at very large disorder,
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Fig. 3. Exponent α and DC conductivity σ(0) obtained from
fits of the low-frequency conductivity to σ(ω) = σ(0) + C ωα

(vertical bars in the inset of Figure 2 mark the underlying fre-
quency range). Error bars are estimated by slightly varying µ
in the range −0.05W . . . 0.05W .

and an increase towards α = (d − 2)/2 = 1/2 for weak
disorder. Although our data looks rather convincing, note
one potential problem: The considered frequencies might
still be too large for an observation of the correct scaling,
since from analytical work [12] the

√
ω or ω2 behaviour

of σ(ω) is expected only for frequencies smaller than a
cut-off of the order of ωcr ∼ 1/(ρ(µ)ξ3), while for ω � ωcr

∆σ ∼ ω1/3. On the other hand, also an increased reso-
lution did not show any indication of such a cross-over,
even though, particularly on the insulating side, the lo-
calisation length ξ rapidly decreases with W , reaching the
order of 1 for the largest disorder values considered. We
hope further studies can resolve this puzzling issue.

Keeping in mind the above subtleties, we can also try
to address the critical behaviour expressed in σ(0). As the
comparison of data for 503 and 1003 sites in Figure 2 illus-
trates, for the considered frequencies the AC conductivity
does not suffer from noticeable finite-size effects. This is
corroborated by estimates of the diffusion length Lω (the
distance electrons diffuse within a field cycle; cf. Ref. [10]),
throughout yielding Lω � L. Therefore the fit parame-
ter σ(0) in Figure 3 should correspond to the thermody-
namic limit of the DC conductivity, which for dimension
d = 3 is widely believed to follow a σ(0) ∼ (Wc − W )s

law with s = ν ≈ 1.57. However, the curvature of σ(0),
derived from our data, seems to be larger, leading to s
of the order of 2. On the other hand, we also obtained
reasonable fits using the expression for the Bethe lat-
tice [8], σ(0) ∼ (Wc − W )−3/2 exp(−A(Wc − W )−1/2),
which would contradict the behaviour generally assumed
for the d = 3 Anderson model. Although resolving these
interesting questions certainly requires an improvement of
both the resolution and the statistical quality of the data,
our results shed new light on the Anderson transition and
illustrate the potential of the numerical approach.

In summary, we described a promising new technique
for the numerical calculation of finite temperature dynam-
ical correlation functions for both interacting and non-
interacting quantum systems. By extending the Kernel
Polynomial Method to functions of two variables, we avoid

the disadvantages of thermal projection techniques, and
obtain reliable results for all temperatures (and chemical
potentials) from a single simulation run. Being a hybrid
of the iterative schemes of numerical diagonalisation and
of random sampling, the approach might also inspire new
Monte-Carlo methods for correlation functions. Applying
the method to the Anderson model we present compre-
hensive data for the AC conductivity, which substantially
improves previous numerical studies with respect to ac-
cessible system size, considered frequency and parameter
range, as well as statistical significance. In addition, we
confirm analytical predictions for the low-frequency be-
haviour of the AC conductivity, but find indications that
the critical behaviour of the DC conductivity might devi-
ate from the commonly presumed form.
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